نتایجی در مورد حدس c1-چگالش پالیس

پایان نامه
چکیده

فرض کنیم m یک منیفلد فشرده d-بعدی و بدون کران باشد و diff^r(m) که r بزرگتر و مساوی صفر است، مجموعه تمام دیفیومورفیسم ها روی m همراه با c^r-توپولوژی باشد. یکی از مسایل اصلی در دینامیک های مشتق پذیر، حدس مشهور پالیس است که به صورت زیر بیان می شود. حدس c^r-چگالش پالیس:" c^r-دیفیومورفیسم های روی m با یک مماس هموکلینیک یا یک دور چند بعدی، در متمم c^r-بستار سیستم های هذلولوی c^r-چگال هستند." در بعد 2، حدس پالیس در c^1-توپولوژی توسط پوژالس و سامبارینو ثابت شده است. در واقع آن ها ثابت کردند که در بعد 2، هر دیفیومورفیسم را می توان با یک دیفیومورفیسم هذلولوی یا با یک مماس هموکلینیک c^1-تقریب زد. در ابعاد بالاتر از 2 حدس پالیس هنوز باز است هر چند که ون نتایجی را درباره ی حدس پالیس برای ابعاد بالاتر بیان کرده است، او ثابت کرد که اگر دیفیومورفیسم f دور از مماس هموکلینیک و دور چند بعدی باشد، آن گاه نقاط ناسرگردان f ساختار جزئا هذلولوی دارد. همچنین، گن و ونتایج c^1-نوعی را درباره ی تماس مداری، دورهای هتروکلینیک و بستارهای هموکلینیک به دست آوردند، و قضیه c^1-چگالش سه گانه را به این صورت بیان کردند که :" دیفیومورفیسم ها با تعداد نامتناهی مولفه های ترایای ضعیف یا یک دور چند بعدی، در متمم c^1-بستار دیفیومورفیسم های هذلولوی c^1-چگال هستند." ما در این پایان نامه سعی می کنیم که قضیه c^1-چگالش سه گانه فوق را به عنوان بیان دیگری از حدس پالیس ارائه دهیم. این پایان نامه شامل سه فصل می باشد، که در هر یک از فصل ها مطالب زیر را مورد بررسی قرار می دهیم. در فصل اول، به بیان تعاریف و قضایای مقدماتی مورد نیاز در پایان نامه می پردازیم. در فصل دوم، اثبات حدس پالیس در بعد 2 را که توسط پوژالس و سامبارینو بیان شد را نشان می دهیم، و همچنین نتایجی از حدس پالیس را در بعد 2 و در ابعاد بالاتر از 2 بررسی می کنیم. در فصل سوم، یک نتیجه مهم از حدس پالیس را مورد بررسی قرار می دهیم که معروف به قضیه c^1-چگالش سه گانه است و توسط گن و ون ثابت شده است.

۱۵ صفحه ی اول

برای دانلود 15 صفحه اول باید عضویت طلایی داشته باشید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

در مورد حدس روتا

مترویدها‎ در تلاش برای فراهم آوردن یک رفتار مجرد یکسان از وابستگی در جبر خطی و نظریه گراف معرفی شده‌اند. نام متروید ساختاری مربوط به یک ماتریس را القا می‌کند. تعریف ویتنی‎‎ تنوعی شگفت‌انگیز از ساختارهای ترکیبیاتی را در برداشت. از این گذشته مترویدها به طور طبیعی در بهینه‌سازی ترکیبیاتی پدیدار می‌شوند، زیرا آنها دقیقا‏ً همان ساختارهای ترکیبیاتی هستند که الگوریتم حریصانه برای آن به نتیجه می‌رسد. یک...

متن کامل

در مورد حدس روتا

مترویدها‎ در تلاش برای فراهم آوردن یک رفتار مجرد یکسان از وابستگی در جبر خطی و نظریه گراف معرفی شده اند. نام متروید ساختاری مربوط به یک ماتریس را القا می کند. تعریف ویتنی‎‎ تنوعی شگفت انگیز از ساختارهای ترکیبیاتی را در برداشت. از این گذشته مترویدها به طور طبیعی در بهینه سازی ترکیبیاتی پدیدار می شوند، زیرا آنها دقیقا‏ً همان ساختارهای ترکیبیاتی هستند که الگوریتم حریصانه برای آن به نتیجه می رسد. یک...

متن کامل

حدس آنتروپی مینیمال

مطالعه خمینه ها در هندسه امری طبیعی است و در این زمینه، تشخیص خمینه ها از یکدیگر مساله ای مهم است. در این راستا، ناورداهای مختلف به کار می آیند و کار تشخیص را ساده می سازند. البته به طور کلی این که بتوان فضاهای مشخصی را توسط یک یا دو ناوردا از یکدیگر تمیز داد، امری بسیار خوشبینانه به نظر می رسد، ولی اخیرا این تشخیص صورت گرفته است و نشان داده شده است که برخی مفاهیم در عین پیچیده بودن ظاهرشان، در...

متن کامل

نتایجی درباره گروه های کامل

فرض کنید یک G گروه کامل باشد. در این مقاله با روش جدیدی ثابت می کنیم که هر خودریختی از گروه G را می توان به طور یکتا به یک خودریختی از گروه پوششی G گسترش داد. همچنین ثابت می کنیم اگر G یک فاکتور مرکزی از گروهی مثل H باشد آنگاه هر خودریختی از گروه G به طور یکتا به یک همریختی از گروه پوششی G به H گسترش پیدا می کند.

متن کامل

منابع من

با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ذخیره در منابع من قبلا به منابع من ذحیره شده

{@ msg_add @}


نوع سند: پایان نامه

وزارت علوم، تحقیقات و فناوری - دانشگاه علوم پایه دامغان

میزبانی شده توسط پلتفرم ابری doprax.com

copyright © 2015-2023